Efficient Minimum Error Rate Training and Minimum Bayes-Risk Decoding for Translation Hypergraphs and Lattices

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and Franz Och

> Presented By: Jeff Flanigan April 18, 2012

Overview

- Hypergraph MERT
- Efficient Minimum Bayes-Risk (MBR) Decoding for Lattices
- MBR Decoding on Hypergraphs
- Combine all three
- Results

MERT Review

Decoder rule:
$$\hat{E}(F_s; \lambda_1^M) = \arg \max_E \left\{ \sum_{m=1}^M \lambda_m h_m(E, F_s) \right\}$$

MERT Tuning:
$$\hat{\lambda}_{1}^{M} = \arg\min_{\lambda_{1}^{M}} \left\{ \sum_{s=1}^{S} \operatorname{Err}(R_{s}, \hat{E}(F_{s}; \lambda_{1}^{M})) \right\}$$

 F_s : source R_s : reference translation h_m : feature functions λ_m : feature weights

MERT Review

Decoder rule:
$$\hat{E}(F_s; \lambda_1^M) = \arg \max_E \left\{ \sum_{m=1}^M \lambda_m h_m(E, F_s) \right\}$$

Choose direction d_1^M $\gamma = \lambda_1^M + \gamma \cdot d_1^M$

$$\begin{split} \hat{E}(F;\gamma) &= \arg\max_{E\in\mathcal{C}} \left\{ (\lambda_1^M + \gamma \cdot d_1^M)^\top \cdot h_1^M(E,F) \right\} \\ &= \arg\max_{E\in\mathcal{C}} \left\{ \underbrace{\sum_m \lambda_m h_m(E,F)}_{=a(E,F)} + \gamma \cdot \underbrace{\sum_m d_m h_m(E,F)}_{=b(E,F)} \right\} \\ &= \arg\max_{E\in\mathcal{C}} \left\{ a(E,F) + \gamma \cdot b(E,F) \right\} \end{split}$$

MERT Review

Hypergraphs

Hypergraph has nodes and edges H = <V,E> Edges directed: go from multiple tails to single head

Translation Hypergraphs

Each edge labeled with a rule

Nodes = nonterminals

Path = translation hypothesis

Repeat until convergence:

- Pick a direction
- Efficiently calculate upper envelope over entire lattice
- Line search for best BLEU score (for entire devset)

<u>Computing the upper envelope</u> Step 1: Convert hypergraph to regular graph Nodes -> V type nodes Edges -> A type nodes

Step 2: Propagate upper envelope up to the root

Step 2: Propagate upper envelope up to the root Λ nodes: Sum (also include rule score)

Step 2: Propagate upper envelope up to the root Λ nodes: Sum (also include rule score)

Step 2: Propagate upper envelope up to the root
∧ nodes: Sum (also include rule score)
∨ nodes: Max

Minimum Bayes-Risk Decoding

Decoding Rule:

$$\hat{E} = \operatorname*{argmin}_{E' \in \mathcal{G}} \sum_{E \in \mathcal{G}} L(E, E') P(E|F)$$

Minimize expected loss under probability model P(E|F)

Minimum Bayes-Risk Decoding

Minimum Bayes-Risk Decoding

Efficient MBR on Lattices

Rewrite

$$p(w|\mathcal{G}) = \sum_{E \in \mathcal{G}} 1_w(E) P(E|F).$$

$$p(w|\mathcal{G}) = \sum_{E \in \mathcal{G}} \sum_{e \in E} f(e, w, E) P(E|F)$$

 $f(e, w, E) = \begin{cases} 1 & w \in e, p(e|\mathcal{G}) > p(e'|\mathcal{G}), \\ e' \text{ precedes } e \text{ on } E \\ 0 & \text{otherwise} \end{cases}$ Count w only once in hypothesis

Approximate f with f* = indicates edge containing w that has highest arc probability p(e|G) f* can be calculated independent of path <= efficient

$$p(w|\mathcal{G}) = \sum_{E \in \mathcal{G}} \sum_{e \in E} f^*(e, w, \mathcal{G}) P(E|F)$$
(7)
$$= \sum_{e \in \mathcal{E}} 1_{w \in e} f^*(e, w, \mathcal{G}) \sum_{E \in \mathcal{G}} 1_E(e) P(E|F)$$
e ranges over all edges,
pull out of sum
$$= \sum_{e \in \mathcal{E}} 1_{w \in e} f^*(e, w, \mathcal{G}) P(e|\mathcal{G}),$$
 $P(e|\mathcal{G})$ is posterior prob of lattice edge

Efficient MBR on Lattices

Algorithm 3 MBR Decoding on Lattices

- 1: Sort the lattice nodes topologically.
- 2: Compute backward probabilities of each node.
- 3: Compute posterior prob. of each *n*-gram:
- 4: for each edge e do
- 5: Compute edge posterior probability $P(e|\mathcal{G})$.
- 6: Compute *n*-gram posterior probs. $P(w|\mathcal{G})$:
- for each n-gram w introduced by e do
- 8: Propagate n-1 gram suffix to h_e .
- 9: if $p(e|\mathcal{G}) > \text{Score}(w, T(e))$ then
- 10: Update posterior probs. and scores: $p(w|\mathcal{G}) += p(e|\mathcal{G}) - \text{Score}(w, T(e)).$ $\text{Score}(w, h_e) = p(e|\mathcal{G}).$

Score(w,t) is highest probability of paths that terminate on t and contain n-gram w

11: else

12:

- $Score(w, h_e) = Score(w, T(e)).$
- 13: end if
- 14: end for
- 15: end for
- 16: Assign scores to edges (given by Equation 3).
- 17: Find best path in the lattice (Equation 3).

Efficient MBR on Hypergraphs

Algorithm 4 MBR Decoding on Hypergraphs

- 1: Sort the hypergraph nodes topologically.
- 2: Compute inside probabilities of each node.
- 3: Compute posterior prob. of each hyperedge $P(e|\mathcal{G})$.
- 4: Compute posterior prob. of each n-gram:
- 5: for each hyperedge e do
- 6: Merge the *n*-grams on the tail nodes T(e). If the same *n*-gram is present on multiple tail nodes, keep the highest score.
- 7: Apply the rule on e to the n-grams on T(e).
- 8: Propagate n 1 gram prefixes/suffixes to h_e .
- 9: for each *n*-gram *w* introduced by this hyperedge do

10: **if**
$$p(e|\mathcal{G}) > \text{Score}(w, T(e))$$
 then

11:
$$p(w|\mathcal{G}) += p(e|\mathcal{G}) - \text{Score}(w, T(e))$$

Score $(w, h_e) = p(e|\mathcal{G})$

Essentially the same as for lattices. Need to propagate n-gram prefixes and suffices

12: else

13:
$$Score(w, h_e) = Score(w, T(e))$$

- 14: end if
- 15: end for
- 16: end for
- 17: Assign scores to hyperedges (Equation 3).
- 18: Find best path in the hypergraph (Equation 3).

MERT for MBR Parameter Tuning

Use MERT to tune θ_i 's

$$\hat{E} = \operatorname*{argmax}_{E' \in \mathcal{G}} \theta_0 |E'| + \sum_w \theta_{|w|} \#_w(E') p(w|\mathcal{G})$$

Also include additional feature $g_{N+1}(E,F)$ = original decoder cost (MAP translation)

Evaluation

NIST training data

Dataset	# of sentences		
	aren	zhen	
dev	1797	1664	
nist02	1043	878	
nist03	663	919	

	Avg. Runtime/sent [msec]				
	(Mach	nerey 2008)	Suggested Alg.		
	aren	zhen	aren	zhen	
phrase lattice	8.57	7.91	10.30	8.65	
hypergraph	-	_	8.19	8.11	

Table 2: Average time for computing envelopes.

Pruned hypergraph comparable running time

	BLEU (%)				Avg.	
	aren		zhen		time	
	nist03	nist02	nist03	nist02	(ms.)	
MAP	54.2	64.2	40.1	39.0	-	
N-best MBR	54.3	64.5	40.2	39.2	3.7	
Lattice MBR						
FSAMBR	54.9	65.2	40.6	39.5	3.7	
LatMBR	54.8	65.2	40.7	39.4	0.2	

Table 3: Lattice MBR for a phrase-based system.

Lattice MBR 20x faster than FSAMBR

	BLEU (%)				Avg.	
	aren		zhen		time	
	nist03	nist02	nist03	nist02	(ms.)	
	Hiero					
MAP	52.8	62.9	41.0	39.8	-	
N-best MBR	53.2	63.0	41.0	40.1	3.7	
HGMBR	53.3	63.1	41.0	40.2	0.5	
SAMT						
MAP	53.4	63.9	41.3	40.3	-	
N-best MBR	53.8	64.3	41.7	41.1	3.7	
HGMBR	54.0	64.6	41.8	41.1	0.5	

Table 4: Hypergraph MBR for Hiero/SAMT systems.

Hypergraph MBR 7x faster than N-best MBR

Evaluation

System	BLEU (%)				
	MAP	MBR			
		default	mert-b	mert+b	
aren.pb	54.2	54.8	54.8	54.9	
aren.hier	52.8	53.3	53.5	53.7	
aren.samt	53.4	54.0	54.4	54.0	
zhen.pb	40.1	40.7	40.7	40.9	
zhen.hier	41.0	41.0	41.0	41.0	
zhen.samt	41.3	41.8	41.6	41.7	

Not much gain over default parameter settings

Table 5: MBR Parameter Tuning on NIST systems

MBR wrt. MAP	default	mert-b	mert+b
# of gains	18	22	26
# of no-changes	9	5	8
# of drops	12	12	5

Table 6: MBR on Multi-language systems.

Gain over default parameter settings