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Overview 

• Hypergraph MERT 
• Efficient Minimum Bayes-Risk (MBR) Decoding 

for Lattices 
• MBR Decoding on Hypergraphs 
• Combine all three 
• Results 



MERT Review 

Decoder rule: 

MERT Tuning: 

Fs: source 
Rs: reference translation 
hm: feature functions 
λm: feature weights 



MERT Review 

Decoder rule: 

Choose direction d1
M                                          =  



MERT Review 

Model Score 

BLEU 

Upper 
Envelope 

Piecewise constant 

Convex 



Hypergraphs 

Hypergraph has nodes and edges H = <V,E> 
Edges directed: go from multiple tails to single head 

Source: http://www.cs.cmu.edu/afs/cs/project/cmt-55/lti/Courses/731/www/Spring-11/ClassSchedule2011.htm  Chris Dyer’s Slides 3/23  



Translation Hypergraphs 

Each edge labeled with a rule 
Nodes = nonterminals 
Path = translation hypothesis 

Source: http://www.cs.cmu.edu/afs/cs/project/cmt-55/lti/Courses/731/www/Spring-11/ClassSchedule2011.htm  Chris Dyer’s Slides 3/28  



Hypergraph MERT 

Repeat until convergence: 
 Pick a direction 
 Efficiently calculate upper envelope over   
  entire lattice 
 Line search for best BLEU score (for entire  
  devset) 



Hypergraph MERT 
Computing the upper envelope 
Step 1: Convert hypergraph to regular graph 
 Nodes -> ∨ type nodes 
 Edges -> ∧ type nodes 



Hypergraph MERT 
Step 2: Propagate upper envelope up to the root 
  



Hypergraph MERT 
Step 2: Propagate upper envelope up to the root 
 ∧ nodes: Sum (also include rule score) 
  



Hypergraph MERT 
Step 2: Propagate upper envelope up to the root 
 ∧ nodes: Sum (also include rule score) 
  



Hypergraph MERT 
Step 2: Propagate upper envelope up to the root 
 ∧ nodes: Sum (also include rule score) 
 ∨ nodes: Max 



Minimum Bayes-Risk Decoding 

Decoding Rule: 

Minimize expected loss under 
probability model P(E|F) 



Minimum Bayes-Risk Decoding 

Decoding Rule: 

-Loss = log(BLEU) ≈ 

1 if w is in E 
0 otherwise 

# of times w is 
in E’ 



Minimum Bayes-Risk Decoding 

Decoding Rule: 

-Loss = log(BLEU) ≈ 

Plug in ⇒ 

where “Posterior probability of  
n-gram w in the lattice G” 

1 if w is in E 
0 otherwise 

# of times w is 
in E’ 

Sum over E 
P(E|F) = 1 



Efficient MBR on Lattices 
Rewrite  

where  

Approximate f with f* = indicates edge containing w that has highest arc probability p(e|G) 
 f* can be calculated independent of path <= efficient 

Count w 
only once in 
hypothesis 

e ranges over all edges, 
pull out of sum 

 is posterior prob of lattice edge 



Efficient MBR on Lattices 

Score(w,t) is 
highest probability 
of paths that 
terminate on t and 
contain n-gram w 



Efficient MBR on Hypergraphs 

Essentially the 
same as for lattices. 
Need to propagate 
n-gram prefixes 
and suffices 



Use MERT to tune θi’s 

MERT for MBR Parameter Tuning 

Also include additional feature gN+1(E,F) = original decoder cost (MAP translation) 



Evaluation 

Pruned hypergraph comparable running time 

NIST training data 

Lattice MBR 20x faster than FSAMBR Hypergraph MBR 7x faster than N-best MBR 



Evaluation 

Gain over default parameter settings 

Not much gain over default parameter settings 
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